

Pollution transport forecast during pluvial flood events

Robert Sämann, Thomas Graf, Insa Neuweiler

Institute of Fluid Mechanics and Environmental Physics in Civil Engineering

Leibniz University of Hannover, Germany

Agenda:

- 1. Pollution Transport Model
- 2. Pluvial Flood Forecast

Dynamic solute transport in multiple domains

Accident with hazardous injection spill

2D Surface

Inlets Manholes

1D Pipe system

Cross domain transport paths

Hydrodynamic runoff model

Hystem Extran 2D (1D-2D runoff & routing) creates

dynamic velocities and water levels based on precipitation pattern

Dynamic velocity and waterlevel in pipe and on surface.

Solute transport model

Lagrangian Particles, Random Walk apporach for diffusion

$$x(t + \Delta t) = x(t) + u(x(t)) \cdot \Delta t + \sqrt{2 \cdot D(x(t)) \cdot \Delta t} \cdot \xi$$

- + No numerical diffusion
- + Easy to track
- + Scalable
- + Parallelization
- o No reaction / deposition so far (prepared in code)
- Concentration calculation
- Many particles needed

Influence of routing uncertainty

Same

- Injection location
- Injection time
- Flow field

Area of low intensity with high variation

Area of high intensity with low variation

→ Create **Risk Maps** for accumulation locations

Surface contamination risk map

Risk Maps for accumulation locations

Red colour: Area of high concentration or long retention time

Source injection: uniform distribution over whole surface domain

Tracking only after particles moved more than 50 m.

Sämann, R., T. Graf, and I. Neuweiler (2019) Modeling of contaminant transport during an urban pluvial flood event—The importance of surface flow, Journal of Hydrology 568, 301-310.

Soil domain transport

3D movement in soil

Exfiltration from pipesystem when above groundwater level

Outlook: 3D contamination output / visualisation , Direct coupling from pipe leakage

Peche, A., T. Graf, L. Fuchs, I. Neuweiler (2017) A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil, Journal of Hydrology 555, 569-585, DOI: 10.1016/j.jhydrol.2017.10.050

Transport model JAVA code

Input: Various formats (HYSTEM EXTRAN 2D, SWMM, OpenGeoSys)

Export: Contamination shapes as GeoJSON, SHP

90 seconds calculation time for 3,5 hours flow field with 100,000 particles on Intel i7 8x3.6GHz, uses 2 GByte RAM

Optimized for multithreading, low RAM cost, dynamic loading of network database resources

Check out https://github.com/rsaemann/GULLI Contact saemann@hydromech.uni-hannover.de

EVUS Research project

Rain Forecast, increasing leadtime

High definition surface model for hydrodynamic modelling of pluvial floods

Time & location extraction of rain events from social media

Historic flood database 800 dynamic flood simulations

Loss estimation model

Collect Information / Send warnings via App

EVUS Research project

Institut für Strömungsmechanik und Umweltphysik im Bauwesen

User Report Input:

- Rain intensity
- Flooding
- Contamination

Output:

- Maximum water level
- Contamination boundary
- Loss estimation

Outlook

Implementation link to

Operational Web-Application Town of Hannover Server

User Report Input:

- Rain intensity?
- Flooding?
- Contamination?

Output:

- Dynamic water level
- Contamination intensity
- Loss estimation

Questions?

Verification? Yes, against a high resolution numerical code

Validation? No. If you know of a tracer experiment

in large scale urban areas during a

pluvial flood, please let me know.

Thanks for your attention.

Check out https://github.com/rsaemann/GULLI Contact saemann@hydromech.uni-hannover.de

Questions from the audience:

Applicable for other scenarios? Yes, internal structure for millions of cells. Only flow field is needed (dynamic or static)

Do particles have a volume? No, particles only have a mass. Particle injection do not change the flow field.

Passive tracer approach. Swim "on top" of the flow field.

How many people used the App? App was available but not public announced. Only project member used the App to report findings.