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Empirical Flood Loss Models (@
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1. Learns patterns and dependencies from empirical data to predict building damage
2. Complex models require large sample of observed loss cases along with detailed hazard, exposure and
vulnerability of the building.
3. Probabilistic models account for uncertainty in data, model structure and parameterizations
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Examples taken from case studies in Germany for illustration
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Synthesized using various data sources, expert opinions and Engineering perspectives.
Data requirements for development of synthetic models are very less.

In practice, synthetic flood loss models are often deterministic and rarely validated against empirical data.

S

Synthetic models generalize better than empirical models and perform well during spatio-temporal transfer

(application of INSYDE in several Italian flood cases; Amadio et al. 2019).
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Synthetic Model: Full-scale Appraisal Using MCM ((’-Evsnsm —
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» Household level information as predictors: Empirical Survey Household locations
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Combining Empirical data with MCM predictions (('-Evsnsm RISK

ETN
Build  Fabn Relati loss (brloS ) = Build  fabn loss /reconstm cod
bris _obS|brls _MCM~ Beta (a, B)
| a=puxe
p=0A-wxg
oa u=0Xbrle MCM 4 ¢
O|
R2=05

brloss MCM

02/10/2019

Hierarchical Bayesian approach for flood loss modelling



What do we know about the 2015 Floods in UK?

« Rainfall, temperature and soil moisture were exceptionally high
during the 2015 flood event.

« Multi-layer safety measures were implemented in not all regions
(e.g. Keswick, Carlisle)

 Inefficient communication of residual risk.

« Awareness of flood risk seems to be higher in smaller towns
without much structural protection as compared to the bigger cities
where big flood protection schemes are implemented (e.g.
Carlisle).

« Some communities implemented ineffective precautionary
measures due to lack of guidance (e.g. Appleby).
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SystemRisk: Flood Task Force, 2019
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Combining Empirical data with MCM predictions by Region
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Combining Empirical data with MCM predictions by Region (('-Evsnsm —
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o o o Hierarchical Bayesian Model (HBM)
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- Leave-one-building-out cross-validation
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1. Using HBM, empirical evidence from new flood events can be integrated with the established
synthetic models.
2. HBM inherently provides reliability of the loss prediction for each building and group of

buildings in each region.

Limitations and Future Work

1. The approach is validated using empirical loss data from UK 2015. This case study has only a few
useful data points (35 buildings) for empirical validation.
2. The methodology will be tested for other regions, e.g. Germany and Netherlands based on the

synthetic models Rhine Atlas and Damage Scanner.
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