The ascent of Eifel plume and its interaction with European lithosphere and asthenosphere
The Eifel hotspot, situated in western Germany, has been volcanically active for several tens of millions of years. Previous studies have indicated that the source of these long-term volcanic activities is a plume visible in the upper mantle and in some models of the lower mantle. However, the deep origin of the plume is still under debate, since the tomography images do not consistently show a continuous plume conduit between the surface and the core-mantle boundary and the Eifel hotspot is not related to any flood basalt province or a clearly age-progressive hotspot track. It has also been proposed that there is a stagnant slab in the mantle transition zone created by the Alpine-Mediterranean subduction zone. This stagnant slab might be interacting with the Eifel plume, but so far this mechanism has not been studied in detail using a geodynamic approach. In addition, the ascent of the Eifel plume and the other sub-lithospheric drivers of vertical motion (such as edge-driven convection or cooling and accretion of sub-lithospheric mantle) as well as lithosphere deformation might cause dynamic topography at the earth surface in central Europe. However, so far the relative contributions of these processes during the Cenozoic are still controversial.
In this project, I intend to employ the geodynamic research software ASPECT to model the lithospheric-scale surface response of Central Europe to plume impingement, small-scale convection and plate tectonic forcing, and try to decompose the present-day topography into individual components. Also, I will conduct 3D models with high resolution and complex rheologies to explain the possible origins of the Eifel hotspot and to address how the plume and the stagnant slab interact with each other
Project duration: 2022-2026
Funding agency: China Scholarship Council
Phd candidate: Yingying Li
Supervisors: Bernhard Steinberger, Sascha Brune, Eline Le Breton