HelTek - Labor für experimentelle Tektonik am GFZ Helmholtz-Zentrum für Geoforschung

Die experimentelle Tektonik ist das Teilgebiet der Geowissenschaften, das so genannte "Analogmodelle" verwendet, die von der Natur auf das Labor herunterskaliert werden, um tektonische Prozesse "in situ" zu untersuchen. Dank neuer Materialien, Prüfmethoden und Beobachtungstechniken, die in den letzten zwei Jahrzehnten entwickelt wurden, liefert die analoge Modellierung heute quantitative tektonische Beobachtungen über alle relevanten Raum- und Zeitskalen.

Unser Labor für experimentelle Tektonik am GFZ besteht aus drei grundlegenden Modulen:

1) Materialprüfung mit einer Reihe von Materialprüfgeräten zur Charakterisierung der Eigenschaften gesteinsanaloger Materialien wie Reibung, Elastizität, Viskosität usw.

2) Analoge Modellierung mit einer Reihe von maßgeschneiderten Deformationsgeräten zur Simulation von (seismo)tektonischen und anderen geologischen Prozessen

3) Experimentelles Monitoring zur Quantifizierung von Verformungen in Analogmodellen mit Hilfe verschiedener Sensoren und Bildkorrelationsmethoden

Ein einleitender Text ist hier zu finden. Ein Video zu unserer Arbeit hier.

Projekte, Abschlussarbeiten und Stipendien:

Sonderausgaben

Analogue modelling of basin inversion, Solid Earth, Vol. 13/14 (2022/23)

Style of deformation and tectono-sedimentary evolution of fold-and-thrust belts and foreland basins: from nature to models, Tectonophysics, Vol. 767 (2019)

GeoMod 2014 – Modelling in Geoscience, Tectonophysics, Vol. 684 (2016)

Tectonics of oblique plate boundary systems, Tectonophysics, Vol. 693 (2016)

 

Vorabveröffentlichungen (Preprints)

Ge et al.: How Topographic Slopes Control Gravity Spreading in Salt-bearing Passive Margins: Insights from Analogue Modelling, ESSOAr, https://doi.org/10.1002/essoar.10506599.3

Peschka & Rosenau: Two-phase flows for sedimentation of suspensions, WIAS Preprint No. 2743, http://dx.doi.org/10.20347/WIAS.PREPRINT.2743

Rosenau et al.: Creep on seismogenic faults: Insights from analogue earthquake experiments, EarthArXiv, https://dx.doi.org/10.31223/osf.io/24u5h

 

*Guest publications (studies supported by access to or services by HelTec infrastructure)

**Collaborative publications (studies performed mainly in partner lab)

 

2025

Zwaan et al. (2025): Local strain reorientation explains deformation along rift-oblique tectonic lineaments along the Main Ethiopian Rift, Tektonika, >preprint@EarthArXiv

2024

Liu et al. (2024): Fault networks in triaxial tectonic settings: Analogue modeling of distributed continental extension with lateral shortening, Tectonics, https://doi.org/10.1029/2023TC008127 (open access article)

**Corbi et al. (2024): Asperity size and neighboring segments can change the frictional response and fault slip behavior: insights from laboratory experiments and numerical simulations, J. Geophys. Res., https://doi.org/10.1029/2023JB026594 (open access article)

2023

Kosari et al. (2023): Along-strike seismotectonic segmentation reflecting megathrust seismogenic behavior. Geology 2023; doi: https://doi.org/10.1130/G51115.1 >preprint@EarthArXiv

Rudolf et al. (2023): Time-dependent Frictional Properties of Granular Materials Used In Analogue Modelling: Implications for mimicking fault healing during reactivation and inversion, Solid Earth, https://doi.org/10.5194/se-14-311-2023 (open access article)

2022

Zwaan et al. (2022): Analogue modelling of basin inversion: a review and future perspectives, Solid Earth  https://doi.org/10.5194/se-13-1859-2022 (open access article)

Elger et al. (2022): The EPOS Multi-Scale Laboratories: A FAIR Framework for stimulating Open Science practice across European Earth Sciences Laboratories, Ann. Geoph. ,https://doi.org/10.4401/ag-8790 (open access article)

Kosari et al. (2022): Upper plate response to a sequential elastic rebound and slab acceleration during laboratory-scale subduction megathrust earthquakes. J. Geophys. Res., https://doi.org/10.1029/2022JB024143 (open access article)

Kosari et al. (2022): Strain signals governed by frictional-elastoplastic interaction of the upper plate and shallow subduction megathrust interface over seismic cycles, Tectonics, https://doi.org/10.1029/2021TC007099 (open access article)

**Mastella et al. (2022): Forecasting surface velocity fields associated with laboratory seismic cycles using Deep Learning, Geoph. Res. Lett., https://doi.org/10.1029/2022GL099632 (open access article)

**Mastella et al. (2022): Foamquake: a novel analog model mimicking megathrust seismic cycles, J. Geoph. Res., https://doi.org/10.1029/2021JB022789

2021

Rudolf et al. (2021): The spectrum of slip behaviours of a granular fault gouge analogue governed by rate and state friction, Geoch. Geoph. Geos., https://doi.org/10.1029/2021GC009825 (open access article)

Osagiede et al. (2021): Influence of zones of pre-existing crustal weakness on strain localization and partitioning during rifting: Insights from analogue mode ling using high resolution 3D digital image correlation, Tectonics, https://doi.org/10.1029/2021TC006970 (open access article)

Michail et al. (2021): Shape of plutons in crustal shear zones: A tectono-magmatic guide based on analogue models, J. Struct. Geol., https://doi.org/10.1016/j.jsg.2021.104417 >preprint@EarthArXiv

Haug et al. (2021): Runout of rock avalanches limited by basal friction but controlled by fragmentation, Earth Surf. Dynam., https://doi.org/10.5194/esurf-9-665-2021 (open access article)

**Zwaan et al. (2021): How initial basin geometry influences gravity-driven salt tectonics: insights from laboratory experiments, Mar. Petrol. Geol., https://doi.org/10.1016/j.marpetgeo.2021.105195 (open access article)

**Poppe et al. (2021): Mechanical properties of quartz sand and gypsum powder (plaster) mixtures: Implications for laboratory model analogues for the Earth’s upper crust, Tectonophysics, https://doi.org/10.1016/j.tecto.2021.228976 >preprint@EarthArXiv

*Schmid et al. (2021): Characteristics of continental rifting in rotational systems: New findings from spatiotemporal high resolution quantified crustal scale analogue models, Tectonophysics, https://doi.org/10.1016/j.tecto.2021.229174 (open access article)

2020

Funiciello et al. (2020): Analysis of global-scale and experimental data to unravel the seismic behaviour of the subduction megathrust, Front. Earth Sci., https://doi.org/10.3389/feart.2020.600152 (open access article)

Kosari et al. (2020): On the relationship between offshore geodetic coverage and slip model uncertainty: Analog megathrust earthquake case studies, Geoph. Res. Lett, https://doi.org/10.1029/2020GL088266(open access article)

**Corbi et al. (2020): Predicting imminence of analog megathrust earthquakes with Machine Learning: Implications for monitoring subduction zones. Geoph. Res. Lett. https://doi.org/10.1029/2019GL086615 (open access article)

**Zwaan et al. (2020): Rift propagation in rotational versus orthogonal extension: insights from 4D analogue models, J. Struct. Geol., https://doi.org/10.1016/j.jsg.2019.103946

*Zorn et al. (2020): Insights into lava dome and spine extrusion using analogue sandbox experiments, Earth Planet. Sci. Lett., https://doi.org/10.1016/j.epsl.2020.116571

2019

Ge et al. (2019): Progressive tilting of salt-bearing continental margins controls thin-skinned deformation. Geology, https://doi.org/10.1130/G46485.1 (open access article)

Ge et al. (2019): Overprinting translational domains in passive margin salt basins: Insights from analogue modelling, Solid Earth, https://doi.org/10.5194/se-10-1283-2019 (open access article)

Lacombe et al. (2019): Style of deformation and tectono-sedimentary evolution of fold-and-thrust belts and foreland basins: From nature to models, Tectonophysics, https://doi.org/10.1016/j.tecto.2019.228163.

Rosenau et al. (2019): Synchronization of great subduction megathrust earthquakes: Insights from scale model analysis. J. Geoph. Res., https://doi.org/10.1029/2018JB016597 >copy@GFZPublic

Rudolf et al. (2019): Smart speed imaging in Digital Image Correlation: Application to seismotectonic scale modelling, Front. Earth Sci.https://doi.org/10.3389/feart.2018.00248 (open access article)

**Corbi et al. (2019): Machine Learning can predict the timing and size of analog earthquakes. Geoph. Res. Lett.https://doi.org/10.1029/2018GL081251 >copy@GFZPublic

2018

Li et al. (2018): Spatiotemporal variation of mantle viscosity and the presence of cratonic mantle inferred from eight years of postseismic deformation following the 2010 Maule Chile earthquake, Geoch. Geoph. Geosys. , https://doi.org/10.1029/2018GC007645 >copy@GFZpublic

Albert et al. (2018): Material transfer and subduction channel segmentation at erosive continental margins: Insights from scaled analogue experiments, Tectonophysics, https://doi.org/10.1016/j.tecto.2018.10.019

Ritter et al. (2018): Growing Faults in the Lab: Insights into the Scale Dependence of the Fault Zone Evolution Process, Tectonics, https://doi.org/10.1002/2017TC004787 >copy@GFZpublic

Ritter et al. (2018): Sandbox rheometry: Co-evolution of stress and strain in Riedel– and Critical Wedge–experiments, Tectonophysics, https://doi.org/10.1016/j.tecto.2017.11.018

 2017

Rosenau et al. (2017): Analogue earthquakes and seismic cycles: Experimental modelling across timescales, Solid Earth, https://doi.org/10.5194/se-8-597-2017 (open access article)

Li et al. (2017): Postseismic uplift of the Andes following the 2010 Maule earthquake: Implications for mantle rheology, Geoph. Res. Lett.https://doi.org/10.1002/2016GL071995 >copy@GFZpublic

**Corbi et al. (2017): Control of asperities size and spacing on seismic behavior of subduction megathrusts, Geoph. Res. Lett., https://doi.org/10.1002/2017GL074182 >copy@GFZpublic

*de Zeeuw-van Dalfsen et al. (2017): Geomorphology and structural development of the nested summit crater of Láscar Volcano studied with Terrestrial Laser Scanner data and analogue modelling, J. Volc. Geoth. Res.http://dx.doi.org/10.1016/j.jvolgeores.2016.09.018

2016

Rosenau et al. (2016): Experimental Tectonics: Convergent Plate Margins, Ref. Mod. Earth Syst. Env. Sci., http://dx.doi.org/10.1016/B978-0-12-409548-9.09497-5

Ritter et al. (2016): Scaling the Sand Box - Mechanical (Dis-) Similarities of Granular Materials and Brittle Rock, J. Geoph. Res., https://doi.org/10.1002/2016JB012915 >copy@GFZpublic

Haug et al. (2016): On the Energy Budgets of Fragmenting Rockfalls and Rockslides: Insights from Experiments, J. Geoph. Res., https://doi.org/10.1002/2014JF003406 >copy@GFZpublic

Leever & Oncken (2016), GeoMod 2014 – Modelling in geoscience, Tectonophysics, http://doi.org/10.1016/j.tecto.2016.06.034

Díaz-Azpiroz et al. (2016): Tectonics of oblique plate boundary systems. Tectonophysics, https://doi.org/10.1016/j.tecto.2016.07.028

Schreurs et al. (2016): Benchmarking analogue models of brittle thrust wedges, J. Struct. Geol., https://doi.org/10.1016/j.jsg.2016.03.005

Klinkmüller et al. (2016):Properties of granular analogue materials: A community wide survey, Tectonophysics, 666, https://doi.org/10.1016/j.tecto.2016.01.017 >preprint@GFZpublic

Pipping et al. (2016): On the efficient and reliable numerical solution of rate-and-state friction problems, Geoph. J. Int., https://doi.org/10.1093/gji/ggv512 >copy@GFZpublic

Rudolf et al. (2016): Rheological benchmark of silicone oils used for analog modeling of short- and long-term lithospheric deformation, Tectonophysics, http://dx.doi.org/10.1016/j.tecto.2015.11.028

2015

Santimano et al. (2015): Intrinsic versus extrinsic variability of analogue sand-box experiments - Insights from statistical analysis of repeated accretionary sand wedge experiments, J. Struct. Geol., https://doi.org/10.1016/j.jsg.2015.03.008

Di Giuseppe et al. (2015): Characterization of Carbopol hydrogel rheology for experimental tectonics and geodynamics, Tectonophysics, https://doi.org/10.1016/j.tecto.2014.12.005

Li et al. (2015): Revisiting viscoelastic effects on interseismic deformation and locking degree: A case study of the Peru-North Chile subduction zone, J. Geoph. Res., https://doi.org/10.1002/2015JB011903 >copy@GFZpublic

Warsitzka et al. (2015): Analogue experiments of salt flow and pillow growth due to basement faulting and differential loading, Solid Earth, https://doi.org/10.5194/se-6-9-2015 (open access article)

2014

Haug et al. (2014): Modelling Fragmentation in Rock Avalanches. In: Landslide Science for a Safer Geoenvironment, Volume 2: Methods of Landslide Studies, K. Sassa, P. Canuti, Y. Yin (eds.), Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-05050-8_16

Leever et al. (2014): The Science Behind Laboratory-Scale Models of the Earth, Eos Trans. AGU, https://doi.org/10.1002/2014EO030008

Li et al. (2014): Splay fault triggering by great subduction earthquakes inferred from finite element models, Geoph. Res. Lett., https://doi.org/10.1002/2013GL058598

**Boutelier et al. (2014): Trench-parallel shortening in the forearc caused by subduction along a seaward-concave plate boundary: Insights from analogue modelling experiments, Tectonophysics, https://doi.org/10.1016/j.tecto.2013.11.028

*Le Corvec et al. (2014): Experimental study of the interplay between magmatic rift intrusion and flank instability with application to the 2001 Mount Etna eruption, J. Geoph. Res., https://doi.org/10.1002/2014JB011224

*Kervyn et al. (2014): Directional flank spreading at Mount Cameroon volcano: Evidence from analogue modeling, J. Geoph. Res., https://doi.org/10.1002/2014JB011330

 2013

Bedford et al. (2013): A high-resolution, time-variable afterslip model for the 2010 Maule Mw = 8.8, Chile megathrust earthquake, Earth Planet. Sci. Lett., https://doi.org/10.1016/j.epsl.2013.09.020

Krawczyk et al. (2013): Seismic imaging of sandbox experiments - laboratory hardware setup and first reflection seismic sections, Solid Earth, https://doi.org/10.5194/se-4-93-2013

Warsitzka et al. (2013): Salt diapirism driven by differential loading - Some insights from analogue modelling, Tectonophysics, https://doi.org/10.1016/j.tecto.2011.11.018

**Boutelier & Cruden (2013): Slab rollback rate and trench curvature controlled by arc deformation, Geology, https://doi.org/10.1130/G34338.1

*Holohan et al. (2013): Origins of oblique-slip faulting during caldera subsidence, J. Geoph. Res. , https://doi.org/10.1002/jgrb.50057

2012

Boutelier et al. (2012): Fore-arc deformation at the transition between collision and subduction: Insights from 3-D thermomechanical laboratory experiments, Tectonics, https://doi.org/10.1029/2011TC003060

Moreno et al. (2012): Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake, Earth Planet. Sci. Lett., http://doi.org/10.1016/j.epsl.2012.01.006

Schurr et al. (2012): The 2007 M7.7 Tocopilla northern Chile earthquake sequence: Implications for along-strike and downdip rupture segmentation and megathrust frictional behavior, J. Geoph. Res.https://doi.org/10.1029/2011JB009030

*Baba, H. O., and S. Peth (2012), Large scale soil box test to investigate soil deformation and creep movement on slopes by Particle Image Velocimetry (PIV), Soil & Till. Res., https://doi.org/10.1016/j.still.2012.05.021

2011

Moreno et al. (2011): Heterogeneous plate locking in the South-Central Chile subduction zone: Building up the next great earthquake, Earth Planet. Sci. Lett., https://doi.org/10.1016/j.epsl.2011.03.025

Boutelier & Oncken (2011): 3-D thermo-mechanical laboratory modeling of plate-tectonics: modeling scheme, technique and first experiments, Solid Earth, https://doi.org/10.5194/se-2-35-2011

Contardo et al. (2011): Material transfer and its influence on the formation of slope basins along the South Central Chilean convergent margin: Insights from scaled sandbox experiments, Tectonophysics, https://doi.org/10.1016/j.tecto.2011.09.016

Reiter et al. (2011): The interaction of two indenters in analogue experiments and implications for curved fold-and-thrust belts, Earth Planet. Sci. Lett., https://doi.org/10.1016/j.epsl.2010.12.002

2010

Moreno et al. (2010): 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, https://doi.org/10.1038/nature09349

Boutelier & Oncken (2010): Role of the plate margin curvature in the plateau buildup: Consequences for the central Andes, J. Geoph. Res., https://doi.org/10.1029/2009JB006296

Rosenau et al. (2010): Experimental insights into the scaling and variability of local tsunamis triggered by giant subduction megathrust earthquakes, J. Geophys. Res., https://doi.org/10.1029/2009JB007100

*Burchardt & Walter (2010): Propagation, linkage, and interaction of caldera ring-faults: comparison between analogue experiments and caldera collapse at Miyakejima, Japan, in 2000, Bull. Volc., https://doi.org/10.1007/s00445-009-0321-7

2009

Buddensiek et al. (2009): Performance of piezoelectric transducers in terms of amplitude and waveform, Geophysics, https://doi.org/10.1190/1.3072619

Rosenau & Oncken (2009): Fore-arc deformation controls frequency-size distribution of megathrust earthquakes in subduction zones, J. Geoph. Res., https://doi.org/10.1029/2009JB006359

Rosenau et al. (2009): Shocks in a box: An analogue model of subduction earthquake cycles with application to seismotectonic forearc evolution, J. Geoph. Res., https://doi.org/10.1029/2008JB005665

*Le Corvec & Walter (2009): Volcano spreading and fault interaction influenced by rift zone intrusions: Insights from analogue experiments analyzed with digital image correlation technique, J. Volc. Geoth. Res., https://doi.org/10.1016/j.jvolgeores.2009.02.006

2008

Cailleau & Oncken (2008): Past forearc deformation in Nicaragua and coupling at the megathrust interface: Evidence for subduction retreat? Geoch. Geoph. Geos., https://doi.org/10.1029/2007GC001754

Hoth et al. (2008): Distant effects in bivergent orogenic belts — How retro-wedge erosion triggers resource formation in pro-foreland basins, Earth Planet. Sci. Lett., https://doi.org/10.1016/j.epsl.2008.05.033

2007

Hoth et al. (2007): Frontal accretion: An internal clock for bivergent wedge deformation and surface uplift, J. Geoph. Res., https://doi.org/10.1029/2006JB004357

Kenkmann et al. (2007): Coupled effects of impact and orogeny: Is the marine Lockne crater, Sweden, pristine?, Meteor. Planet. Sci., https://doi.org/10.1111/j.1945-5100.2007.tb00556.x

2006

Hoth et al. (2006): Influence of erosion on the kinematics of bivergent orogens: Results from scaled sandbox simulations – In: Willett, S.D., Hovius, N., Brandon, M.T., Fischer, D. (Eds.), Tectonics, Climate, and Landscape evolution: Geol. Soc. Amer. Spec. Pup., https://doi.org/10.1130/2006.2398(12)

Lohrmann et al. (2006): Subduction channel evolution in britle fore-arc wedges -a combined study with scaled sandbox experiments, seismological and reflection seismic data and geological field evidence, In: The Andes – active subduction orogeny (eds: Oncken et al.), Frontiers in Earth Sciences, 237-262, Springer, Berlin Heidelberg, https://doi.org/10.1007/978-3-540-48684-8_11

Schreurs et al. (2006): Analogue benchmarks of shortening and extension experiments. Geol. Soc. London Spec. Pub., https://doi.org/10.1144/GSL.SP.2006.253.01.01

*Panien et al. (2006): Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments, J. Struct. Geol., https://doi.org/10.1016/j.jsg.2006.05.004

2005

Adam et al. (2005): Shear localisation and strain distribution during tectonic faulting - New insights from granular-flow experiments and high-resolution optical image correlation techniques, J. Struct. Geol., https://doi.org/10.1016/j.jsg.2004.08.008

Vietor & Oncken (2005): Controls on the shape and kinematics of the Central Andean plateau flanks: Insights from numerical modeling, Earth Planet. Sc. Lett., https://doi.org/10.1016/j.epsl.2005.06.004

2004

Hampel et al. (2004): Response of the tectonically erosive south Peruvian forearc to subduction of the Nazca Ridge: Analysis of three-dimensional analogue experiments, Tectonics, https://doi.org/10.1029/2003TC001585

2003

Lohrmann (2003): The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges, J. Struct. Geol., https://doi.org/10.1016/S0191-8141(03)00005-1

zur Übersicht
zurück nach oben zum Hauptinhalt